

www.nextern.com

651.203.2100

Contact Us

MODERN PRACTICES
TURBOCHARGE MEDICAL
DEVICE SOFTWARE
ENGINEERING

http://www.nextern.com/
https://nextern.com/contact-nextern/

2

SUMMARY

Nextern's software engineering team focuses on developing robust, easy to use solutions for
connected medical devices and digital health management. Adapting modern software
engineering practices to the rigor of the regulated processes required by the industry and
international standards has challenges but enables more responsive and rapid software
solution development.

INTRODUCTION/BACKGROUND

Software development for regulated industries requires rigorous documentation and detailed
processes to ensure the highest quality software. This has traditionally been achieved
through meticulously structured development using Waterfall methods which generate
extensive documentation at each step.

Modern software development practices such as the Agile development methodology, test-
driven development (TDD), DevSecOps, and mob or pair programming (also known as
ensemble programming) can enable more responsive, higher quality and efficient software
delivery.

Nextern's software engineering team is implementing processes to overcome the challenges
of leveraging these software development practices to improve delivery of regulated medical
device and software applications.

PROBLEM

Medical device and medical software application development requires generating many
artifacts to satisfy requirements of regulatory bodies and industry standards. This overhead
can slow down and increase the expense of software development. Often, software teams
don’t think they can leverage modern ways of developing software due to the constraints of
these regulations. Sometimes, they are correct. Modern methods do not lend themselves to
use in a regulated environment without some work to ensure they are used in the right way
and at the right time. Adjustments may also be needed to these practices so that they
generate the necessary documentation required by regulations.

https://nextern.com/medical-device-software/
https://liink.nextern.com/

3

SOLUTION

Nextern is adapting modern software engineering practices, specifically Extreme
Programming, test-driven development (TDD), mob programming, and DevSecOps for use in
the regulated medical device software application domain.

Our implementation of Extreme Programming brings our end users to the forefront of our
process and allows us to respond quickly to changing project and product requirements. We’re
changing our process to allow us to create incremental documentation under strong change
control. This lets us capture changes as we go and make sure that nothing is lost. Working at
a sustainable pace means our team can maintain focus and attention to detail. Our regular
retrospectives let us adapt processes and practices as needed.

Our team typically executes using a structure
of month-long releases that are planned
around the implementation, verification, and
documentation of a specific feature. We include
key stakeholders - right now product owners,
but eventually also clinical, regulatory, design
assurance, and other functional groups - in
planning.

Each release is broken into a series of week-
long iterations where the team, with
stakeholder input, plans, implements, verifies,
and documents vertical slices of the feature.

PROBLEM STATEMENT: The problem lies in the inherent challenges faced by medical
device and software development teams. Regulatory requirements and industry
standards impose a substantial burden of documentation. This can hinder the adoption of
modern software development methods, making it difficult to leverage cost and speed
improvements these methods can provide.

https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Team_programming#Mob_programming
https://en.wikipedia.org/wiki/DevOps

4

Test-driven development (TDD) challenges our software engineers to think about the
testability of their code from the beginning. We expect TDD to help us verify safety-critical
code and drive us to structure code modularly, making it more robust and easier to

maintain. We are implementing DevOps pipelines
to ensure that the testing we create is executed
and eventually automatically documented
throughout the development lifecycle.

TDD is becoming our preferred way to create
software. The goal is for developers, often
working in a pair or a mob (more on that later), to
write the unit level tests for a feature or function
before they begin writing any code. Software
engineers submit the tests and code together for

review before the changes are integrated into the code base. Once integrated, the tests run
on each build we execute.

Mob programming, or ensemble programming, promotes knowledge sharing within our
software team and across teams such as design assurance. Mob programming sessions cut
out the back and forth of a typical pull request review process. Working together, our teams
own the entire codebase and documentation. Safety-critical
functions and quality are a team responsibility. Having the eyes of
multiple engineers and, when possible, stakeholders on the tests
and code as we write them is making us better at catching all test
cases, writing easier to understand code, and capturing essential
documentation.

We are developing ways to take credit for the mob review sessions
while minimizing overhead. That will allow us to provide evidence of the reviews performed
on the software as is often required by regulatory authorities.

DevSecOps will enable efficient implementation of many of our practices. Automating the
generation of incremental documentation will help us capture changes to requirements and
flag tests that need to be updated or re-executed. Using CI pipelines for our builds allows us
to automate the integration of code changes and shift our security and quality practices left

5

by automatically executing static analysis and running tests from our TDD practices on each
build.

In the future, we will also configure these pipelines for release builds and include additional
functions such as generation of version description documents, test results reports,
packaging of source code and details of the changes integrated into a release. For mobile
applications, we hope to even include the release of artifacts to the relevant app stores.

We intend to create similar automation to support mob programming, capturing the details of
each session and collating them into final reports to record the team that wrote, reviewed,
tested, and approved the code changes.

OUTCOME

At Nextern, software engineering for medical devices and software applications is a team
sport. We are committed to using the best practices of modern software engineering to solve
problems for our customers and ultimately for patients. Regulatory requirements are not a
barrier to using these practices. With a little adjustment and occasionally some additional
record-keeping, we have started to leverage these practices to increase our efficiency in
creating high quality, safe software and all the documentation needed to demonstrate that to
regulatory bodies. As importantly, our use of these practices has helped us build and maintain
a high quality, dedicated team of software engineers who thrive on tackling difficult problems
and are happy working in a regulated environment. Like any team, this is an ongoing journey
for us, and we expect to continue refining our practices, investing in new tools, and seeing
more improvements.

https://nextern.com/

